
JOURNAL OF AEROSPACE COMPUTING, INFORMATION, AND COMMUNICATION
Vol. 4, February 2007

System Management Services for High-Performance
In-situ Aerospace Computing

Ian Troxel,∗ Eric Grobelny,† and Alan D. George‡

High-Performance Computing and Simulation (HCS) Research Laboratory,
University of Florida, Gainesville, Florida, 32611-6200

With the ever-increasing demand for higher bandwidth and processing capacity of
today’s space exploration, space science, and defense missions, the ability to efficiently
apply commercial-off-the-shelf technology for on-board computing is now a critical need.
In response to this need, NASA’s New Millennium Program office has commissioned the
development of the Dependable Multiprocessor for use in payload and robotic missions.
The Dependable Multiprocessor system provides power-efficient, high-performance, fault-
tolerant cluster computing resources in a cost-effective and scalable manner. As a major step
toward the flight system to be launched in 2009, Honeywell and the University of Florida
have successfully investigated and developed a management system and associated middle-
ware components to make the processing of science-mission data as easy in space as it is in
ground-based clusters. This paper provides a detailed description of the Dependable Mul-
tiprocessor’s middleware technology and experimental results validating the concept and
demonstrating the system’s scalability even in the presence of faults.

I. Introduction

NASA and other space agencies have had a long and relatively productive history of space exploration as
exemplified by recent rover missions to Mars. Traditionally, space exploration missions have essentially been

remote-control platforms with all major decisions made by operators located in control centers on Earth. The onboard
computers in these remote systems have contained minimal functionality, partially in order to satisfy design size and
power constraints, but also to reduce complexity and therefore minimize the cost of developing components that
can endure the harsh environment of space. Hence, these traditional space computers have been capable of doing
little more than executing small sets of real-time spacecraft control procedures, with little or no processing features
remaining for instrument data processing. This approach has proven to be an effective means of meeting tight budget
constraints because most missions to date have generated a manageable volume of data that can be compressed and
post-processed by ground stations.

However, as outlined in NASA’s latest strategic plan and other sources, the demand for onboard processing is
predicted to increase substantially due to several factors.1 As the capabilities of instruments on exploration platforms
increase in terms of the number, type and quality of images produced in a given time period, additional process-
ing capability will be required to cope with limited downlink bandwidth and line-of-sight challenges. Substantial

Received 27 July 2006. Copyright © 2007 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Copies of this paper may be made for personal or internal use, on condition that the copier pay the $10.00 per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include the code 1542-9423/04 $10.00 in
correspondence with the CCC. The results presented in this submission substantially expand upon preliminary results presented
in a submission to the 2006 International Conference on Embedded Systems and Applications entitled, “Reliable Management
Services for COTS-based Space Systems and Applications.” The Dependable Multiprocessor research project is funded in part
under NASA NMP ST-8 contract NMO-710209 with partial matching funds from the state of Florida’s High-tech Corridor Council.∗ Ph.D. Candidate in the Electrical and Computer Engineering Department, AIAA Student Member, troxel@hcs.ufl.edu
† Ph.D. Student in the Electrical and Computer Engineering Department, grobelny@hcs.ufl.edu
‡ Professor of Electrical and Computer Engineering, AIAA Member, george@hcs.ufl.edu

636

TROXEL, GROBELNY, AND GEORGE

bandwidth savings can be achieved by performing preprocessing and, if possible, knowledge extraction on raw data
in-situ. Beyond simple data collection, the ability for space probes to autonomously self-manage will be a critical
feature to successfully execute planned space-exploration missions. Autonomous spacecraft have the potential to
substantially increase return on investment through opportunistic explorations conducted outside the Earth-bound
operator control loop. In achieving this goal, the required processing capability becomes even more demanding when
decisions must be made quickly for applications with real-time deadlines. However, providing the required level of
onboard processing capability for such advanced features and simultaneously meet tight budget requirements is a
challenging problem that must be addressed.

In response, NASA has initiated several projects to develop technologies that address the onboard processing
gap. One such program, NASA’s New Millennium Program (NMP), provides a venue to test emergent technology
for space. The Dependable Multiprocessor (DM) is one of the four experiments on the upcoming NMP Space
Technology 8 (ST8) mission, to be launched in 2009, and the experiment seeks to deploy Commercial-Off-The-
Shelf (COTS) technology to boost onboard processing performance per watt.2 The DM system combines COTS
processors and networking components (e.g., Ethernet) with a novel and robust middleware system that provides a
means to customize application deployment and recovery features, and thereby maximize system efficiency while
maintaining the required level of reliability by adapting to the harsh environment of space. In addition, the DM system
middleware provides a parallel processing environment comparable to that found in high-performance COTS clusters
of which application scientists are familiar. By adopting a standard development strategy and runtime environment,
the additional expense and time loss associated with porting of applications from the laboratory to the spacecraft
payload can be significantly reduced.

The remainder of this paper presents and examines the performance of the DM system’s management middleware
and associated development and runtime libraries and is divided as follows. Section II presents past projects that have
inspired the development of the DM system and other related research. Sections III and IV provide an overview of
the DM architecture and management software respectively. The prototype flight system and ground-based cluster on
which the DM concept is being evaluated is described in SectionV, and SectionVI presents experimental performance
analysis highlighting the scalability of the DM system. Conclusions and future work are highlighted in Section VII.

II. Related Work
The design of the Dependable Multiprocessor builds upon a legacy of platforms and aerospace onboard computing

research projects and the rich collection of tools and middleware concepts from the cluster-computing paradigm. For
example, the Advanced Onboard Signal Processor (AOSP), developed by Raytheon Corporation for the USAF in the
late 1970s and mid 1980s, provided significant breakthroughs in understanding the effects of natural and man-made
radiation on computing systems and components in space.3 The AOSP, though never deployed in space, was instru-
mental in developing hardware and software architectural design techniques for detection, isolation, and mitigation
of radiation effects and provided the fundamental concepts behind much of the current work in fault-tolerant, high-
performance distributed computing. The Advanced Architecture Onboard Processor (AAOP), a follow-on project
to AOSP also developed at Raytheon Corporation, employed self-checking RISC processors and a bi-directional,
chordal skip ring architecture in which any failed system element could be bypassed by using redundant skip links in
the topology.4 While the AAOP architecture provided an alternative that improved system fault tolerance versus con-
temporary custom-interconnect designs, the offered performance could not justify the additional power consumption
of the system.

The Remote Exploration Experimentation (REE) project championed by NASA JPL sought to develop a scal-
able, fault-tolerant, high-performance supercomputer for space composed of COTS processors and networking
components.5 The REE system design deployed a middleware layer, the Adaptive Reconfigurable Mobile Objects of
Reliability (ARMOR), between a commercial operating system and applications that offered a customizable level
of fault tolerance based on reliability and efficiency requirements. Within ARMOR, a centralized fault-tolerance
manager oversees the correct execution of applications through remote agents that are deployed and removed with
each application execution.6 Through ARMOR, the system sought to employ Software-Implemented Fault Tolerance
(SIFT) techniques to mitigate radiation-induced system faults without hardware replication. The preliminary imple-
mentation of this system was an important first step and showed promise with testing performed via a fault-injection
tool. Unfortunately, system deployment was not achieved and scalability analysis was not undertaken. In developing

637

TROXEL, GROBELNY, AND GEORGE

the DM middleware, insight was gleaned from the REE system and the DM design will address some of the perceived
shortcomings in terms of the potential scalability limitations of the REE middleware.

In addition to using traditional COTS processors, there have been a few significant efforts to incorporate Field-
Programmable Gate Arrays (FPGAs) as compute resources to boost performance on select application kernels. The
Australian scientific satellite, FedSat, launched in December 2002, sought to improve COTS processing power by
deploying powerful FPGA co-processors to accelerate remote-sensing applications.7 FedSat’s payload consisted of
a microprocessor, a reprogrammable FPGA, a radiation-hardened, antifuse-based FPGA to perform reconfiguration
and configuration scrubbing, and memory. A follow-on project supported by NASA LARC, Reconfigurable Scalable
Computing (RSC), proposes a compute cluster for space composed entirely of triple-redundant MicroBlaze softcore
processors running uC-Linux and hosted on Xilinx Virtex-4 FPGAs.8 The DM payload will also employ FPGAs to
improve performance using a combination of SIFT, internal FPGA mechanisms, and periodic scrubbing to overcome
faults.

Beyond space systems, much research has been conducted to improve the fault tolerance of ground-based compu-
tational clusters. Although ground-based systems do not share the same strict power and environmental constraints as
space systems, improving fault tolerance and availability is nonetheless important as such systems frequently execute
critical applications with long execution times. One of several notable research projects in this area is the Dynamic
Agent Replication eXtension (DARX) framework which provides a simple mechanism for deploying replicated
applications in an agent-based distributed computing environment.9 The modular and scalable approach provided
by DARX would likely provide performance benefits for ground-based systems but may be too resource-intensive
to appropriately function on resource-limited embedded platforms. By contrast, the management system used in
the UCLA Fault-Tolerant Cluster Testbed (FTCT) project performs scheduling, job deployment and failure recovery
based on a central management group composed of three manager replicas.10 While the central approach taken by the
FTCT design reduces system complexity, hot-sparing managers can strain limited system resources and can become
a bottleneck if not carefully designed. The Comprehensive Approach to Reconfigurable Management Architecture
(CARMA), under development at the University of Florida, aims to make executing FPGA-accelerated jobs in an
HPC environment as easy and reliable as it currently is to execute jobs in traditional HPC environments.11 Elements
of each of the past research projects previously discussed have influenced the DM middleware design; in particular,
CARMA’s ability to seamlessly integrate FPGA devices into the job scheduling system partially formed the basis of
the DM scheduler. The next section provides an overview of the DM system architecture with high-level descriptions
of the major components.

III. System Architecture
Building upon the strengths of past research efforts, the DM system provides a cost-effective, standard process-

ing platform with a seamless transition from ground-based computational clusters to space systems. By providing
development and runtime environments familiar to earth and space science application developers, project devel-
opment time, risk and cost can be substantially reduced. The DM hardware architecture (see Fig. 1) follows an
integrated-payload concept whereby components can be incrementally added to a standard system infrastructure
inexpensively.12 The DM platform is composed of a collection of COTS data processors (augmented with runtime-
reconfigurable COTS FPGAs) interconnected by redundant COTS packet-switched networks such as Ethernet or
RapidIO.13 To guard against unrecoverable component failures, COTS components can be deployed with redun-
dancy, and the choice of whether redundant components are cold or hot spares is mission-specific. The scalable
nature of non-blocking switches provides distinct performance advantages over traditional bus-based architectures
and also allows network-level redundancy to be added on a per-component basis. Additional peripherals or custom
modules may be added to the network to extend the system’s capability; however, these peripherals are outside of
the scope of the base architecture.

Future versions of the DM system may be deployed with a full complement of COTS components but, in order
to reduce project risk for the DM experiment, components that provide critical control functionality are radiation-
hardened in the baseline system configuration. The DM is controlled by one or more System Controllers, each a
radiation-hardened single-board computer, which monitor and maintain the health of the system. Also, the system
controller is responsible for interacting with the main controller for the entire spacecraft. Although system controllers
are highly reliable components, they can be deployed in a redundant fashion for highly critical or long-term missions

638

TROXEL, GROBELNY, AND GEORGE

Fig. 1 System hardware architecture of the Dependable Multiprocessor.

with cold or hot sparing. A radiation-hardened Mass Data Store (MDS) with onboard data handling and processing
capabilities provides a common interface for sensors, downlink systems and other “peripherals” to attach to the DM
system. Also, the MDS provides a globally accessible and secure location for storing checkpoints, I/O and other
system data. The primary dataflow in the system is from instrument to Mass Data Store, through the cluster, back to
the Mass Data Store, and finally to the ground via the spacecraft’s Communication Subsystem. Because the MDS is a
highly reliable component, it will likely have an adequate level of reliability for most missions and therefore need not
be replicated. However, redundant spares or a fully distributed memory approach may be required for some missions.
In fact, results from an investigation of the system performance suggest that a monolithic and centralized MDS may
limit the scalability of certain applications and these results are presented in Section VI.D. The next section provides
a detailed description of the middleware that ensures reliable processing in the DM system.

IV. Middleware Architecture
The DM middleware has been designed with the resource-limited environment typical of embedded space systems

in mind and yet is meant to scale up to hundreds of data processors per the goals for future generations of the
technology. A top-level overview of the DM software architecture is illustrated in Fig. 2. A key feature of this
architecture is the integration of generic job management and software fault-tolerant techniques implemented in the
middleware framework. The DM middleware is independent of and transparent to both the specific mission application
and the underlying platform. This transparency is achieved for mission applications through well-defined, high-
level, Application Programming Interfaces (APIs) and policy definitions, and at the platform layer through abstract
interfaces and library calls that isolate the middleware from the underlying platform. This method of isolation and
encapsulation makes the middleware services portable to new platforms.

To achieve a standard runtime environment with which science application designers are accustomed, a commodity
operating system such as a Linux variant forms the basis for the software platform on each system node including
the control processor and mass data store (i.e., the Hardened Processor seen in Fig. 2). Providing a COTS runtime
system allows space scientists to develop their applications on inexpensive ground-based clusters and transfer their
applications to the flight system with minimal effort. Such an easy path to flight deployment will reduce project
costs and development time, ultimately leading to more science missions deployed over a given period of time.
A description of the other DM middleware components (synonymously referred to as services or agents) follows.

A. Reliable Messaging Middleware
The Reliable Messaging Middleware provides a standard interface for communicating between all software com-

ponents, including user application code, over the underlying packet-switched network. The messaging middleware
provides guaranteed and in-order delivery of all messages on either the primary or secondary networks and does
so in a scalable manner. Inter-processor communication includes numerous critical traffic types such as checkpoint
information, error notifications, job and fault management control information, and application messages. Thus,
maintaining reliable and timely delivery of such information is essential.

639

TROXEL, GROBELNY, AND GEORGE

Fig. 2 System software architecture of the Dependable Multiprocessor.

To reduce development time and improve platform interoperability, a commercial tool with cross-platform support
from GoAhead, Inc., called SelfReliant (SR), serves as the reliable messaging middleware for the DM system. SR
provides a host of cluster availability and management services but the DM prototype only uses the reliable distributed
messaging, failure notification, and event logging services. The messaging service within SR is designed to address the
need for intra- and inter-process communications between system elements for numerous application needs such as
checkpointing, client/server communications, event notification, and time-critical communications. SR facilitates the
DM messaging middleware by managing distributed virtual multicast groups with publish and subscribe mechanisms
over primary and secondary networks. In this manner, applications need not manage explicit communication between
specific nodes (i.e., much like socket communication) and instead simply publish messages to a virtual group that is
managed by SR. The messaging service provides an effective and uniform way for distributed messaging components
to efficiently communicate and coordinate their activities.

SR’s failure notification service provides liveliness information about any agent, user application, and physi-
cal cluster resource via lightweight heartbeat mechanisms. System resources and their relationships are abstractly
represented as objects within a distributed database managed by SR and shared with the Fault-Tolerance Manager
(FTM), which in turn uses liveliness information to assess the system’s health. Agent and application heartbeats are
managed locally within each node by the service and only state changes are reported externally by a lightweight
watchdog process. In the system, the watchdog processes are managed in a hierarchical manner by a lead watchdog
process executing on the system controller. State transition notifications from any node may be observed by agents
executing on other nodes by subscribing to the appropriate multicast group within the reliable messaging service.
Also, SR is responsible for discovering, incorporating, and monitoring the nodes within the cluster along with their
associated network interfaces. The addition or failure of nodes and their network interfaces is communicated within
the watchdog process hierarchy. Extensions to the baseline SR framework have been developed to interface the FTM,
described in Section IV.B, to the notification hierarchy. In particular, the extensions allow the FTM to detect when a
service or application (including SR itself), has initialized correctly or failed. Also, one of the extensions provides a
mechanism by which the FTM starts other middleware services in a fault-tolerant manner.

B. Fault-Tolerance Manager
Two centralized agents that execute on the hardened system controller manage the basic job deployment features

of the DM cluster. The Fault-Tolerance Manager (FTM) is the central fault recovery agent for the DM system.
The FTM collects liveliness and failure notifications from distributed software agents and the reliable messaging
middleware in order to maintain a table representing an updated view of the system. Update messages from the
reliable middleware are serviced by dedicated threads of execution within the FTM on an interrupt basis to ensure
such updates occur in a timely fashion. If an object’s health state transitions to failed, diagnostic and recovery actions
are triggered within the FTM per a set of user-defined recovery policies. Also, the FTM maintains a fault history of

640

TROXEL, GROBELNY, AND GEORGE

various metrics for use in the diagnosis and recovery process. This information is also used to make decisions about
system configuration and by the Job Manager (JM) for application scheduling.

Recovery policies defined within the DM framework are application-independent yet user configurable from
a select set of options. To address failed system services, the FTM may be configured to take recovery actions
including performing a diagnostic to identify the reason for the failure and then directly addressing the fault by
restarting the service from a checkpoint or from fresh. Other recovery options include performing a software-driven
or power-off reboot of the affected system node or shutting the node down and marking it as permanently failed
until directed otherwise. For application recovery, users can define a number of recovery modes based on runtime
conditions. This configurability is particularly important when executing parallel applications using the Message
Passing Interface (MPI). The job manager frequently directs the recovery policies in the case of application failures
and more information on FTM and JM interactions is provided in the next section.

In addition to implementing recovery policies, the FTM provides a unified view of the embedded cluster to the
spacecraft control computer. It is the central software component through which the embedded system provides
liveliness information to the spacecraft. The spacecraft control computer (see Fig. 1) detects system failures via
missing heartbeats from the FTM. When a failure is discovered, a system-wide reboot is employed. In addition
to monitoring system status, the FTM interface to the spacecraft control computer also presents a mechanism to
remotely initiate and monitor diagnostic features provided by the DM middleware.

C. Job Manager and Agents
The primary functions of the DM Job Manager (JM) are job scheduling, resource allocation, dispatching processes,

and directing application recovery based on user-defined policies. The JM employs an opportunistic load balancing
scheduler, with gang scheduling for parallel jobs, which receives frequent system status updates from the FTM in
order to maximize system availability. Gang scheduling refers to the requirement that all tasks in a parallel job be
scheduled in an “all-or-nothing” fashion.14 In addition, the scheduler optimizes the use of heterogeneous resources
such as FPGA accelerators with strategies borrowed from the CARMA runtime job management service.11 Jobs are
described using a Directed Acyclic Graph (DAG) and are registered and tracked in the system by the JM via tables
detailing the state of all jobs be they pending, currently executing, or suspected as failed and under recovery. These
various job buffers are frequently checkpointed to the MDS to enable seamless recovery of the JM and all outstanding
jobs. The JM heartbeats to the FTM via the reliable middleware to ensure system integrity and, if an unrecoverable
failure on the control processor occurs, the backup controller is booted and the new JM loads the checkpointed tables
and continues job scheduling from the last checkpoint. A more detailed explanation of the checkpoint mechanisms
is provided in Section IV.G.

Much like the FTM, the centralized JM employs distributed software agents to gather application liveliness
information. The JM also relies upon these agents to fork the execution of jobs and to manage all required runtime
job information. The distributed nature of the Job Management Agents (JMAs) ensures that the central JM does not
become a bottleneck, especially since the JM and other central DM software core components execute simultaneously
on a relatively slow radiation-hardened processor. Numerous mechanisms are in place to ensure the integrity of the
JMAs executing on radiation-susceptible data processors. In the event of an application failure, the JM refers to a set
of user-defined policies to direct the recovery process. In the event one or more processes fail in a parallel application
(i.e., one spanning multiple data processors) then special recovery actions are taken. Several recovery options exist
for parallel jobs, such as defined in related research from the University of Tennessee at Knoxville.15 These options
include a mode in which the application is removed from the system, a mode where the application continues with
an operational processor assuming the extra workload, a mode in which the JM either migrates failed processes to
healthy processors or instructs the FTM to recover the faulty components in order to reconstruct the system with the
required number of nodes, and a mode where the remaining processes continue by evenly dividing the remaining
workload amongst themselves. As mentioned, the ability of a job to recover in any of these modes is dictated by the
underlying application. In addition, the Mission Manager (as seen in Fig. 2) provides further direction to the JM to
ensure recovery does not affect mission-wide performance. More information on the interaction between the mission
manager and the JM is described in the next section.

641

TROXEL, GROBELNY, AND GEORGE

D. Mission Manager
The Mission Manager (MM) forms the central decision-making authority in the DM system. The MM is deployed

on a radiation-hardened processor for increased system dependability but may execute on the control processor
or alternatively on the MDS if enough processing power exists on the device (denoted MM alternate in Fig. 2).
Deploying the MM on the MDS provides a slight performance advantage for several of its features but the transparent
communication facilities provided by the reliable communication layer APIs allow for great flexibility in the design.
The MM interacts with the FTM and JM to effectively administer the system and ensure mission success based on
three primary objectives: 1) deploy applications per mission policies, 2) collect health information on all aspects
of the system and environment to make appropriate decisions, and 3) adjust mission policies autonomously per
observations.

To deploy applications based on mission policies, the MM relies upon a collection of input files developed by users
to describe the policies to be enforced for the mission at hand. Two types of files, namely mission descriptions and job
descriptions, are used to describe policies at the mission and application level, respectively. The MM uses a frame-
based scheduling approach to application deployment in addition to enforcing application real-time deadlines. Also,
the MM chooses an appropriate replication deployment strategy on a per-application basis based on environmental
and system information provided by the FTM. Job replication is handled by the MM in a transparent, yet user-directed
manner and replication options include double or triple replication with job processes either spatially or temporally
replicated. The MM performs the vote of all job replicas and makes the decision to either rollback to that frame’s
input or abort the current instance of the job and roll forward to the next frame as defined in the mission description.

A job is defined as a particular instance of an application deployed with a particular set of input data, replication
scheme, etc. A job is composed of one or more tasks, each of which is represented by an independent executable
most often executed on a separate processor. For jobs that include multiple tasks, FEMPI is used for inter-process
communication between the tasks (see the next section). The job description file describes all information required
to deploy a job to the JM including relevant files required to execute the job and policies such as which and how
many resources are required to execute the job and how to recover from a failed task. The chain of control by which
applications are deployed in the system is illustrated in Fig. 3. More information on the system monitoring capability
and performance of the MM can be found in.16 The next several sections describe the various application interface
libraries provided by the DM system.

E. FEMPI
The DM system employs an application-independent, fault-tolerant, message-passing middleware called FEMPI

(Fault-tolerant Embedded Message Passing Interface). With FEMPI, we take a direct approach to providing fault
tolerance and improving the availability of the HPC system in space. FEMPI is a lightweight, fault-tolerant design
and implementation that provides process-level fault tolerance to the common Message Passing Interface (MPI)
standard.17 With MPI applications, failures can be broadly classified as process failures (individual processes of
MPI application crashes) and network failures (communication failure between two MPI processes). FEMPI ensures
reliable communication (reducing the chances of network failures) through the reliable messaging middleware.

Fig. 3 DM system job deployment and management control flow.

642

TROXEL, GROBELNY, AND GEORGE

Fig. 4 Interaction between FEMPI and related software components of the Dependable Multiprocessor.

As far as process failures are concerned, any single failed process in a regular fault-intolerant MPI design will
crash the entire application. By contrast, FEMPI prevents the entire application from crashing on individual process
failures.

Fault tolerance and recovery is provided through three stages including detection of a fault, notification of the fault,
and recovery from the fault. The FEMPI runtime services employ the features provided by the reliable messaging
middleware in conjunction with the FTM and JM as shown in Fig. 4. User applications heartbeat to the JMA via
well-defined APIs and the JMA informs the FTM of any process failures by updating the system model. The FTM
in turn informs the JM of an application failure and the JM directs FEMPI’s runtime features (i.e., the MPI Restore
function) to perform a recovery based on the user-defined policy. On a failure, MPI Restore informs all the MPI
processes of the failure. The status of senders and receivers (of messages) are checked in FEMPI before initiating
communication to avoid attempts to establish communication with failed processes. If the communication partner
(sender or receiver) fails after the status check and before communication, then a timeout-based recovery is used
to recover out of the MPI function call. FEMPI can survive the crash of n-1 processes in an n-process job, and, if
required, the system can re-spawn/restart them. Traditional MPI calls are transmitted between tasks over the reliable
middleware’s distributed communication facilities and a program written in conventional MPI can execute over
FEMPI with little or no alteration. More information on the fault-tolerance and scalability characteristics of FEMPI
can be found in.18

F. FPGA Co-Processor Library
Another set of library calls allow users to access Field-Programmable Gate Arrays (FPGAs) to speed up the

computation of select application kernels. FPGA coprocessors are one key to achieving high-performance and
efficiency in the DM cluster by providing a capability to exploit inherent algorithmic parallelism that often cannot be
effectively uncovered with traditional processors. This approach typically results in a 10 to 100 times improvement
in application performance with significant reductions in power.19 Additionally, FPGAs make the cluster a highly
flexible platform, allowing on-demand configuration of hardware to support a variety of application-specific modules
such as digital signal processing (DSP) cores, data compression, and vector processors. This overall flexibility allows
application designers to adapt the cluster hardware for a variety of mission-level requirements. The Universal Standard
for Unified Reconfigurable Platforms (USURP) framework is being developed by researchers at the University of
Florida as a unified solution for multi-platform FPGA development and this API will be brought to bear on the
problem of code portability in the DM system.20 USURP combines a compile-time interface between software and
hardware and a run-time communication standard to support FPGA coprocessor functionality within a standard
framework.21

G. MDS Server and Checkpoint Library
The MDS Server process (shown in Fig. 2) facilitates all data operations between user applications and the

radiation-hardened mass memory. The reliable messaging service is used to reliably transfer data, using its many-
to-one and one-to-one communication capabilities. Checkpoint and data requests are serviced on the Mass Data
Store in parallel to allow for multiple simultaneous checkpoint or data accesses. The application-side API consists

643

TROXEL, GROBELNY, AND GEORGE

of a basic set of functions that allow data to be transferred to the MDS in a fully transparent fashion. These functions
are similar to C-type interfaces and provide a method to write, read, rename, and remove stored checkpoints and
other data files. The API also includes a function that assigns each application with a unique name that is used for
storing checkpoints for that particular application. This name is generated based upon the name of the application
and a unique job identifier and process identifier defined by the central JM when the job is scheduled. Upon failover
or restart of an application, the application may check the MDS for the presence of a specific checkpoint data, use
the data if it is available, and complete the interrupted processing. Checkpoint content and frequency is user-directed
to reduce system overhead. Other agents within the DM middleware use the same checkpointing facilities available
to users to store critical information required for them to be restarted in the event of a failure. Also, the MM uses the
user-API compare function when it performs voting on replicated jobs.

H. ABFT Library
The Algorithm-Based Fault Tolerance (ABFT) library is a collection of mathematical routines that can detect

and in some cases correct data faults. Data faults are faults that allow an application to complete, but may produce
an incorrect result. The seminal work in ABFT was completed in 1984 by Huang and Abraham.22 The DM system
includes several library functions for use by application developers as a fault-detection mechanism. ABFT operations
provide fault tolerance of linear algebraic computations by adding check-sum values in extra rows and columns of
the original matrices and then checking these values at the end of the computation. The mathematical relationships
of these checksum values to the matrix data is preserved over linear operations. An error is detected by re-computing
the checksums and comparing the new values to those in the rows and columns added to the original matrix. If an
error is detected, an error code is returned to the calling application. The appeal of ABFT over simple replication
is that the additional work that must be undertaken to check operations is of a lower order of magnitude than the
operations themselves. For example, the check of an FFT is O(n), whereas the FFT itself is O(n log n).

In the DM system, ABFT-enabled functions will be available for use by the application developer to perform
automated, transparent, low-overhead error checking on linear algebraic computations. In the longer term, it is
expected that other, non-algebraic algorithms will similarly be ABFT-enabled and added to the library. If a data fault
is detected via ABFT, a user-directed recovery strategy will be invoked based on the returned error code. A typical
response would be to stop the application and restart from checkpointed values.

V. Experimental Setup
To investigate the performance of the DM middleware, experiments have been conducted on both a system designed

to mirror when possible and emulate when necessary the features of the satellite system to be launched in 2009 and
also on a typical ground-based cluster of significantly larger size. Beyond providing results for scalability analysis,
executing the DM middleware and applications on both types of platforms demonstrates the system’s flexibility and
the ease with which space scientists may develop their applications on an equivalent platform. The next two sections
describe the architecture of these systems.

A. Prototype Flight System
The prototype system developed for the current phase of the DM project, as shown in Fig. 5, consists of a collection

of COTS Single-Board Computers (SBCs) executing Linux (Monta Vista), a reset controller and power supply for
performing power-off resets on a per-node basis, and redundant Ethernet switches. Six SBCs are used to mirror the
specified number of data processor boards in the flight experiment (four) and also to emulate the functionality of
radiation-hardened components (two) currently under development. Each SBC is comprised of a 650 MHz PowerPC
processor, memory, and dual 100 Mbps Ethernet interfaces. The SBCs are interconnected with two COTS Ethernet
switches and Ethernet is used for all system communication. Ethernet is the prevalent network for processing clusters
due to its low-cost and relatively high performance and the packet-switched technology provides distinct advantages
for the DM system over bus-based approaches. A Linux workstation emulates the role of the Spacecraft Command
and Control Processor, which is responsible for communication with and control of the DM system.

Beyond primary system controller functionality, a single SBC is used to emulate both the backup controller and
the MDS. This dual-purpose setup is used due to the rarity of a system controller failure (projected to occur once per
year or less frequent) and budget restrictions, but the failover procedure to the backup system controller has been

644

TROXEL, GROBELNY, AND GEORGE

Fig. 5 System configuration of the prototype testbed.

well tested with a dedicated backup system controller (i.e., configuring the testbed with only three data processors).
The SBCs are mounted in a Compact PCI chassis for the sole purpose of powering the boards (i.e., the bus is not
used for communication of any type). The SBCs are hot-swappable and successful DM system fault tests have been
conducted that include removing an SBC from the chassis while the system is executing parallel applications.

Various components (shown as boxes with dotted lines in Fig. 5) have been included via PCI Mezzanine Card
(PMC) slots on the SBCs in order to emulate features that the flight system will require. System controllers in the
testbed are connected to a reset controller emulating the power-off reset control system via a third Ethernet interface
card to a subsidiary Ethernet network (labeled Other Ethernet Switch in Fig. 5). This connection will likely be
implemented as discrete signals in the flight experiment. A number of data processors are equipped with an Alpha
Data ADM-XRC-II FPGA card. The flight system will likely require a different type of interface due to the poor
conduction cooling and shock resistance characteristics of PMC slots. The MDS memory in the system is currently
implemented as a 40 GB PMC hard drive, while the flight system will likely include a radiation-hardened, solid-state
storage device currently under development.

B. Ground-based Cluster System
In order to test the scalability of the DM middleware to see how it will perform on future systems beyond the

six-node testbed developed to emulate the exact system to be initially flown, the DM system and applications were
executed on a cluster of traditional server machines each consisting of 2.4 GHz Intel Xeon processors, memory
and a Gigabit Ethernet network interface. The DM middleware is designed to scale up to 64 data processors and
investigations on clusters of these sizes and larger will be conducted once resources become available. As previously
described, the fact that the underlying PowerPC processors in the testbed and the Xeons in the cluster have vastly
different architectures and instruction sets (e.g., they each use different endian standards) is masked by the fact that the
operating system and reliable messaging middleware provide abstract interfaces to the underlying hardware. These
abstract interfaces provide a means to ensure portability and these experiments demonstrate that porting applications
developed for the DM platform from a ground-based cluster to the embedded space system is as easy as recompiling
on the different platform. As a note, for any experiment on the cluster, a primary system controller and backup system
controller configured as the MDS is assumed to be in the system and the total number of nodes reported denotes the
number of data processors and does not include these other two nodes.

VI. Prototype System Analysis
Several classes of experiments were undertaken to investigate the performance and scalability of the DM system.

An analysis of the DM system’s availability and ability to recover from faults was conducted and is presented in the
next section. Sections VI.B and VI.C present and analyze the results of a job deployment and a scalability analysis
of the DM software middleware respectively. Also, a case study application that highlights improvements required

645

TROXEL, GROBELNY, AND GEORGE

to ensure the scalability of the flight system’s hardware architecture was investigated and quantified and the analysis
of these results is presented in Section VI.D.

A. Analysis of the DM System’s Fault Recovery Features
In order to provide a rough estimate of the expected availability provided by the DM system in the presence

of faults, the time to recover from a failure was measured on the prototype flight system. As defined on the REE
project, unavailability for the DM system is the time during which data is lost and cannot be recovered. Therefore, if
the DM system suffers a failure yet can successfully recover from the failure and use reserve processing capability
to compute all pending sensor and application data within real-time deadlines, the system is operating at 100%
availability. Recovery times for components within the DM system have been measured and are presented in Table 1.
All recovery times measure the time from when a fault is injected until the time at which an executing application
recovers.

For the DM system’s first mission, it has been estimated that three radiation-induced faults will manifest as
software failures per 101-minute orbit. Assuming the worst-case scenario (i.e., each fault manifests as an operating
system error) the nominal system uptime is 97.4188%, which again may actually be 100% availability as most
applications do not require 100% system utilization. Unfortunately, the definition for system availability is mission-
specific and cannot be readily generalized. Missions with other radiation upset rates and application mixes are under
consideration. A preliminary analysis of the system using NFTAPE, a fault injection tool23 that allows faults to be
injected into a variety of system locations including CPU registers, memory and the stack, suggests that the likelihood
of a fault occurring that manifests in such a manner as to disable a node (i.e., require a Linux OS recovery) is relatively
small (7.05%) because most transient memory flips do not manifest in an error. In addition, the development team
has also tested hardware faults by removing and then replacing SBCs from the hot-swappable cPCI chassis while
applications are running on those system nodes as well as physically unplugging primary and secondary network
cables. Also, directed fault injection using NFTAPE has been performed to test the DM system’s job replication
and ABFT features. Preliminary availability numbers (i.e., assuming a failure occurred when an application required
the failed resource) have been determined to be around 99.9963% via these analyses. Any shortcomings discovered
during these fault injection tests have been addressed and, after all repairs, the DM system has successfully recovered
from every fault injection test performed to date. The system is still undergoing additional fault-injection analysis.

In order to gauge the performance and scalability of the fault-recovery mechanisms beyond the six-node flight
system, the ability of the DM middleware to recover from system faults was also analyzed on the ground-based
cluster. The time required for the FTM to recover a failed JMA when the JMAs fail relatively infrequently (i.e., under
normal conditions) proved to be constant at roughly 250 ms for all cluster sizes investigated. However, an additional
set of experiments was conducted on the cluster to test the limits of the service’s scalability. In these tests, each JMA
in the cluster was forced to fail one second after being deployed on a node and the results of these experiments are
presented in Fig. 6. Also, the FTM and other agent processes are forced to sleep periodically in order to minimize
processor utilization. However, if these “sleep” durations are set to be too long, the response times of these agents
become significantly delayed causing critical events to suffer performance penalties. A balance between response
time and overhead imposed on the system must be struck and the mechanism by which to control this tradeoff are
the controlled sleep times configured by the user. The optimal value for these sleep times may vary based on system
performance and size so the optimal value for each agent must be determined to optimize system performance. The
effects of varying the length of the period during which the FTM is idle, denoted sleep time, to four different values
are also shown in Fig. 6. The results demonstrate that the time for the FTM to recover JMAs under the most stressing

Table 1 DM component recovery times.

Component Recovery time (sec)

Application 0.8385
JMA 0.7525
MDS Server 1.3414
SR Messaging Middleware 50.8579
Linux Operating System 52.1489

646

TROXEL, GROBELNY, AND GEORGE

Fig. 6 JMA restart time for several FTM sleep times.

conditions possible is still linearly bound as the number of nodes in the system increases. Also, reducing the sleep
time to 50 ms (and therefore decreasing the FTM’s average response time) provides roughly a 13% performance
improvement over setting the sleep time to 100 ms in the best case (i.e., 20 nodes shown in Fig. 6). Processor
utilization was found to be constant at roughly 2% for the FTM, 6% for SR and less than 1% for all other agents in
each of these experiments, but each value roughly doubled when the same experiment was performed for the 25 ms
case (not shown). Since the 25 ms FTM sleep time experiment provided approximately the same performance as that
seen when setting the sleep time to 50 ms, the optimal FTM sleep time for both the testbed and cluster is 50 ms. Fault
scalability experiments in which a node is required to be rebooted were not investigated on the ground-based cluster
because the nodes require almost an order of magnitude more time to reboot than do the nodes in the flight system
prototype.

B. Analysis of the DM Middleware’s Job Deployment Features
The DM system has been designed to scale to 64 or more processors and several experiments were conducted

to ascertain the scalability of the DM middleware services. Of prime importance is determining the middleware’s
ability to deploy jobs in a scalable fashion while not imposing a great deal of overhead on the system. As previously
described, agents in the DM system are periodically directed to be idle for a given period of time to minimize the
burden of the processor on which they execute. To determine the optimal value for other agent sleep times besides the
FTM and quantify job deployment overhead, a significant number of jobs (more than 100 for each experiment) were
deployed in the DM system. Since the focus of these experiments was to stress the system, each job did not perform
any additional computation (i.e., no “real” work) but only executed the necessary application overhead of registering
with the JMA and informing the JMA that the job is completed. Experiments were also conducted with applications
that do perform “real” computation and the system’s impact in those experiments was found to be less than the results
found in these stressful tests because the management service was required to perform significantly fewer functions
in a given period of time. Therefore, the operations of scheduling, deploying and removing a completed job from the
DM system are independent of the job’s execution time.

Figure 7 shows the results of the stressing experiments performed on both the testbed and the cluster. Many jobs
were placed into the JM’s job buffer, and the JM scheduled and deployed these jobs as quickly as system resources
would allow. The job completion times shown are measured from the time the job was scheduled by the JM until the
time at which the JM was notified by the corresponding JMA that the job completed successfully. The results were
averaged over the execution of at least 100 jobs for each experiment and this average was then averaged over multiple
independent experiments. To determine how sleep times affect the response time versus imposed system overhead,
the JM sleep time was varied in this experiment between 50 ms and 1000 ms with the JMA sleep times fixed at 100 ms.

647

TROXEL, GROBELNY, AND GEORGE

Fig. 7 Job completion times for various agent sleep times.

For the testbed system, adjusting the JM sleep time provided at most a 3.4% performance improvement (i.e., agent
sleep time of 50 ms versus 1000 ms for the four-node case). However, since the processor utilization was measured
to be constant at 2.5%, 2.3% and 5.3% for the JM, FTM and SR respectively for all experiments, a sleep time of
50 ms provides the best performance for the testbed. A sleep time of 25 ms was examined and was shown to provide
the same performance as that of the 50 ms sleep time but with an additional 50% increase in processor utilization.
SR was tuned to provide the optimal performance versus overhead for the system as a whole by adjusting buffer
sizes, heartbeat intervals, etc. and then held constant in order to assess the newly developed system components. The
overhead imposed on the system by other agents and services (besides SR) was found to be negligible and therefore
the results of varying their sleep times are not presented.

The results of the job completion time experiments on the ground-based cluster (Fig. 7b) show the same general
trend as is found in the testbed results. Agent sleep times of 50 ms and 100 ms provide a performance enhancement
compared to instances when larger sleep time values are used, especially as the number of nodes scales. The outlying
data point for the 500 ms sleep time at one node occurs because the time to deploy and recover a job in that case
is roughly equal to the JM sleep time. Frequently, the lone job active in the system completes just as the JM goes
to sleep and therefore is not detected as complete until the JM becomes active again after a full sleep period. In
other instances, one or more nodes are completing jobs at various points in time so the same effect is not observed.
However, unlike in the testbed analysis, setting the JM sleep time to 50 ms imposes an additional 20% processor
utilization as compared to the system when set to 100 ms, though the overall processor utilization is relatively low for
the DM middleware. The results suggest a JM sleep time of 100 ms is optimal because the overhead observed when
the JM sleep time is above 100 ms imposes an overhead roughly equivalent to that observed when set to 100 ms. The
job completion times measured for the cluster are roughly half that of the values measured in the testbed experiments.
This result suggests the cluster results show what can be expected when the testbed is scaled up in the coming years
by roughly multiplying each performance value in Fig. 7b by two. The results demonstrate the scalability of the DM
middleware in that the overhead imposed on the system by the DM middleware is linearly bounded.

Figure 8a presents the measured processor utilization in the cluster when the agent sleep times are set to 100 ms
and Fig. 8b shows system memory utilization. The SR processor utilization incorporates all agent communication
and updates to the system information model, operations that could be considered as JM and FTM functions if it were
possible to explicitly highlight those operations. Memory utilization was found to only be dependent on the size of
the JM job buffer, which is the memory allocated to the JM to keep track of all jobs that are currently pending in the
system. Note this buffer space does not limit the total number of jobs the system can execute, just the number that can
be executing simultaneously. The memory utilization is scalable in that it is linearly bounded (note the logarithmic
scale in Fig. 8b), but a realistic system would likely require ten to twenty buffer slots and certainly not more than a
few hundred. The memory utilization in this region of interest is roughly 4MB and the values presented in Fig. 8b
were the same on both platforms for all experiments.

648

TROXEL, GROBELNY, AND GEORGE

Fig. 8 System overhead imposed by the DM middleware.

C. Performance and Scalability Summary
The optimal system parameter values and middleware performance and scalability results observed in the preceding

experiments are summarized in Table 2. Also, the projected performance of the DM middleware on future flight
systems incorporating more nodes than provided by our testbed facilities are included in Table 2 as well. The
projections are based on our current testbed technology and therefore can be considered worst-case performance
values because the flight system will incorporate improved versions of all components. Two system sizes were
chosen for the projected values to match the planned maximum system size for the first full deployment of the
product (i.e., 64 nodes) and to show the system size that saturates the limiting factor for the management service
(i.e., control processor utilization).

As previously described, the optimal value for the FTM sleep time was observed to be 50 ms for all experiments
and this value will likely be optimal for larger flight systems as well because the majority of the FTM’s operations
are performed via independent, interrupt-based threads (i.e., updating internal tables due to heartbeat and failure
notifications) that are largely unaffected by the sleep time. A JM sleep time of 50 ms was found to be optimal for the
testbed but 100 ms was found as the optimal value on the 20-node cluster. This result was due to the commensurate
increase in workload (i.e., number of jobs) imposed on the JM as the number of nodes was increased. The projected
results suggest 100 ms is also the optimal value for larger systems composed of the components found in the 4-node
testbed due to an increase in control processor utilization as the number of nodes increases. As previously described,
the optimal JMA sleep time was found to be 100 ms for both system types and is independent of system size because
JMAs are fully distributed throughout the cluster and therefore inherently scalable. As a result, the optimal JMA
sleep time for larger systems is also projected to be 100 ms.

Table 2 System parameter summary.

4-Node 20-Node 64-Node flight 100-Node flight
Parameter Testbed Cluster System (projected) System (projected)

Optimal FTM Sleep Time 0.05 s 0.05 s 0.05 s 0.05 s
Optimal JM Sleep Time 0.05 s 0.1 s 0.1 s 0.1 s
Optimal JMA Sleep Time 0.1 s 0.1 s 0.1 s 0.1 s
Control Processor Utilization 10.0% 24.1% 52.25% 95.3%
Data Processor Utilization 3.2% 3.2% 3.2% 3.2%
Control Processor Memory Utilization 6.1 MB 6.6 MB 6.9 MB 7.1 MB
Data Processor Memory Utilization 1.3 MB 1.3 MB 1.3 MB 1.3 MB
JMA Recovery Time (typical) 0.25 s 0.25 s 0.25 s 0.25 s
JMA Recovery Time (extreme) 0.25 s 2.70 s 9.44 s 14.95 s
Job Deployment Overhead 1.1 s 0.95 s 2.05 s 2.95 s

649

TROXEL, GROBELNY, AND GEORGE

The processor utilization values for the DM middleware are relatively low for the 4- and 20-node systems. Since
the control processor is executing several critical and centralized agents while data processors only execute distributed
monitoring agents (i.e., JMAs), the control processor is more heavily utilized for all cases while the data processor
utilization is independent of system size. The projected results show the control processor to be moderately loaded
for the 64-node system and heavily loaded for a system size of 100 nodes. While these results suggest 100 nodes
is the potential upper bound on system size for the DM middleware, two facts must be considered. First, the flight
system will feature processors and other components with improved performance characteristics and will therefore
extend this number beyond 100 nodes. And second, a “cluster-of-clusters” deployment strategy can be incorporated
whereby the cluster is divided into subgroups and managed by a single control processor with a separate control
processor managing each subgroup. In this manner, the DM middleware could conceivably scale to hundreds of
nodes, if one day the technology were available to provide power for such a cluster in space.

The FTM’s ability to recover faulty JMAs on data processor nodes (denoted JMA Recovery Time in Table 2) was
measured to be 250 ms for all systems under typical conditions (i.e., a JMA fails once per minute or less frequently)
and this value will hold for systems of any size. However, under the extreme case when each JMA in the system
fails every second (denoted extreme in Table 2), the 20-node system requires an average of 2.7 seconds to repair
each faulty JMA and this recovery time was found to increase linearly for the projected flight systems. However, this
extreme case is far more stressing than the actual deployed system would ever encounter because radiation-induced
upset rates of approximately one per minute would likely be the most stressing situations expected (recall two or
three faults per hour are projected for the orbit selected for the system’s first mission). Also, no useful processing
would occur in the system at this stressing failure rate so it would be preferable for the system to shut down if it
ever encountered this improbable situation. The time required for the JM to deploy a job and clean up upon the
job’s completion (denoted Job Deployment Overhead in Table 2) was found to be roughly one second for both the
testbed and 20-node cluster with the cluster being slightly faster due to the improved processor technology. The job
deployment overhead is projected to have a relatively small increase for the 64 and 100 node systems because the
JM performs relatively few operations per job and can service numerous job requests in parallel. The next section
provides a case-study analysis of the system using a simple but important computation kernel used in numerous
imaging applications, the 2D Fast Fourier Transform (FFT).

D. Case Study Analysis
The previous sections contain results that illustrate the scalability of the proposed middleware and system design.

However, the experiments have not directly addressed the level of scalability intended for future systems beyond 20
nodes. Also, general characteristics of the system such as processor utilization and memory usage were measured
rather than studying the system performance and scalability in terms of key application benchmarks. In order to
analyze the proposed system for a larger range of system sizes and under more realistic workloads, models of
critical system components were created using MLDesigner, a discrete-event simulation toolkit from MLDesign
Technologies, Inc. The study focused on the 2D-FFT algorithm since many space applications use it as a key
computation kernel. The baseline simulated system was configured as shown in Table 3 to mimic the flight version
of the experimental testbed system described in Section V.

A fault-tolerant, parallel 2D FFT was modeled and represented the baseline algorithm. The parallel FFT distributes
an image evenly over N processing nodes and performs a logical transpose of the data via a corner turn. A single

Table 3 Simulation model parameters.

Parameter Name Value

Processor Power 650 MIPS
Network Bandwidth Non-blocking 1000 Mb/s
Network Latency 50 μs
MDS Bandwidth 3.0 MB/s
MDS Access Latency 50 ms
Image File Size 1 MB

650

TROXEL, GROBELNY, AND GEORGE

Fig. 9 Steps of parallel 2D FFT.

iteration of the FFT, illustrated in Fig. 9, includes several stages of computation, inter-processor communication
(i.e., corner turn), and several MDS accesses (i.e., image read and write and checkpoint operations).

The results of the baseline simulation (see Fig. 10) show that the performance of the FFT slightly worsens as the
number of data nodes increases. In order to pinpoint the cause of the performance decrease of the FFT, the processor,
network, and MDS characteristics were greatly enhanced (i.e., up to 1000-fold). The results in Fig. 10 show that
enhancing the processor and network has little effect on the performance of the FFT, while MDS improvements
greatly decrease execution time and enhance scalability. The reason the FFT application performance is so directly
tied to MDS performance is due to the high number of accesses to the MDS, the large MDS access latencies, and the
serialization of accesses to the MDS.

After the MDS was verified as the bottleneck for the 2D FFT, several options were explored in order to mitigate
the negative effects of the central memory. The options included algorithmic variations, enhancing the performance
of the MDS, and combinations of these techniques. Table 4 lists the different variations.

Fig. 10 Execution time per image for baseline and enhanced systems.

651

TROXEL, GROBELNY, AND GEORGE

Table 4 FFT algorithmic variations and system enhancements.

Algorithm/Technique Description Label

Parallel FFT Baseline parallel 2D FFT. P-FFT (Baseline)
Parallel FFT with distributed

checkpointing
Parallel 2D FFT with “nearest neighbor” checkpointing—

data node i saves checkpoint data to data node (i + 1)

mod N, where i is a unique integer (0 ≤ i ≤ N − 1) and
N is the number of tasks in a specific job.

P-FFT-DCP

Parallel FFT with distributed
data

Parallel 2D FFT with each node collecting a portion of an
image for processing thus eliminating the data retrieval
and data save stages.

P-FFT-DD

Parallel FFT with dis-
tributed checkpointing
and distributed data

Combination of both distribution techniques described
above.

P-FFT-DCP-DD

Parallel FFT with MDS
enhancements

Parallel 2D FFT using a performance-enhanced MDS. The
MDS bandwidth is improved 100-fold and the access
latency is reduced by a factor of 50.

P-FFT-MDSe

Distributed FFT A variation of the 2D FFT that has each node process an
entire image rather than a part of the image.

D-FFT

Distributed FFT with
distributed data

Distributed 2D FFT algorithm with each node collecting an
entire image to process.

D-FFT-DD

Distributed FFT with MDS
enhancements

Distributed 2D FFT algorithm using a performance-enhanced
MDS.

D-FFT-MDSe

Each technique offers performance enhancements over the baseline algorithm (i.e., P-FFT). Figure 10 shows that
the parallel FFT with distributed checkpointing and distributed data provides the best speedup (up to 740×) over
the baseline because it eliminates all MDS accesses. Individually, the distributed checkpointing and distributed data
techniques result in only a minimal performance increase since the time taken to access the MDS still dominates
the total execution time. MDS performance enhancements reduce the execution of the parallel FFT by a factor of 5.
Switching the FFT algorithm (see Fig. 12) to the distributed version achieves a 2.5× speedup over the baseline which
can then be further increased to 14× and 100× by employing MDS improvements and distributed data, respectively.
It is noteworthy to mention that the distributed FFT is well suited for larger systems sizes since the number of MDS
accesses remains constant as system size increases.

The results for the parallel 2D FFT (see Fig. 11) magnify the affects of the MDS on the system’s performance.
Though the parallel FFT’s general trend shows worse performance as system size scales, the top four lines show
numerous anomalies where the performance of the FFT actually improves as the number of nodes in the system
increases. These anomalies arise from the total number of MDS accesses needed to compute a single image for the
entire system. For example, a dip in execution time occurs in the baseline parallel FFT algorithm when moving from
18 to 19 nodes. The total number of MDS accesses of the parallel FFT using 18 nodes is 90 while the number of
accesses decreases to 76 for the 19-node case. Since the MDS is the system’s bottleneck, the execution time of the
algorithm benefits from the reduction of MDS accesses. Only in the parallel FFT with distributed data and distributed
checkpointing option do we see the “zig-zags” disappear due to no data transfers occurring between the nodes and
the MDS. The distributed FFT (see Fig. 12) also does not show any performance anomalies due to the nature of the
algorithm. That is, the number of MDS accesses remains constant per image since only one node is responsible for
computing that image.

The results in Figs. 11 and 12 corresponded to 1 MB images, thus we conducted simulations to analyze the affects
of larger image sizes. Our results showed that the algorithms and enhancements reversed the trend for the parallel
FFT. That is, the execution times improved as the system size grew, though the improvements were very minimal.
Also, the sporadic performance jumps were amortized due to the large number of MDS accesses as compared to
the variance in the number of accesses. The distributed FFT with distributed data was the only option that showed a
large improvement because more processing could occur when data was more readily available for the processors.

652

TROXEL, GROBELNY, AND GEORGE

Fig. 11 Parallel 2D FFT execution times per image for various performance-enhancing techniques.

Fig. 12 Distributed 2D fft execution times per image for various performance-enhancing techniques.

The results demonstrate that a realistic application can be effectively executed by the DM system if the mass memory
subsystem is improved to allow for parallel memory accesses and distributed checkpoints.

VII. Conclusions
NASA’s strategic plans for space exploration present significant challenges to space computer developers and

traditional computing methods as architectures developed for space missions fall short of the requirements for

653

TROXEL, GROBELNY, AND GEORGE

next-generation spacecraft. The Dependable Multiprocessor (DM) technology addresses this need and provides
the foundation for future space processors. The DM is an integrated parallel computing system that addresses all
of the essential functions of a cluster computer for spacecraft payload processing. The system will provide the
ability to rapidly infuse future commercial technology into the standard COTS payload, a standard development and
runtime environment familiar to scientific application developers, and a robust management service to overcome the
radiation-susceptibility of COTS components, among other features. A detailed description of the DM middleware
was presented and several experiments were conducted to analyze improvements in the prototype DM middleware
and architecture.

An investigation of the system availability was undertaken and showed the system provides an acceptable level
of availability for the first proposed space mission. Also, the system’s fault tolerance capabilities were demon-
strated to scale linearly with the number of nodes even when the number of node failures was far greater than a
typical system would experience. It was determined that decreasing the FTM’s sleep time provides a modest perfor-
mance improvement in recovering from node failures. In addition, the development team has also tested hardware
faults by removing and then replacing SBCs from the hot-swappable cPCI chassis while applications are running
on those system nodes as well as physically unplugging primary and secondary network cables. Directed fault
injection using NFTAPE has been performed to test the DM system’s job replication and ABFT features. Nom-
inal availability numbers (i.e., assuming a failure occurred when an application required the failed resource) of
around 99.9963% have been determined to be a representative value via these analyses. Any shortcomings discov-
ered during these fault injection tests have been addressed and, after all repairs, the DM system has successfully
recovered from every fault injection test performed to date. A broader fault-tolerance and availability analysis is also
underway.

Performance and scalability of the job deployment, monitoring and recovery system were analyzed on a prototype
testbed that emulates the flight system and a ground-based cluster with many more nodes. For the testbed system,
adjusting the agent sleep times provided at most a 3.4% performance improvement (i.e., agent sleep time of 50 ms
versus 1000 ms for the four-node case). Since the processor utilization was measured to be constant at 2.5%, 2.3% and
5.3% for the JM, FTM and SR respectively for all experiments, a sleep time of 50 ms provides the best performance for
the testbed. For the ground-based cluster, agent sleep times of 50 ms and 100 ms provide a performance enhancement
compared to instances when larger sleep time values are used, especially as the number of nodes scales. However,
unlike in the testbed analysis, setting the agent sleep times to 50 ms imposes an additional 20% processor utilization
as compared to the system when set to 100 ms. A balance between response time and overhead imposed on the system
must be struck and the results suggest an agent sleep time of 50 ms and 100 ms for the FTM and JM respectively
is optimal for large-scale systems. The results demonstrate the scalability of the DM middleware to 100 nodes and
beyond with the overhead imposed on the system by the DM middleware scaling linearly with system size.

Performance and scalability studies beyond the 20-node ground-based cluster were performed using simulation
to discover weaknesses in the current system architecture. The results showed that the centralized MDS can be a
performance bottleneck when executing jobs that frequently access the MDS. Various techniques were explored to
mitigate the MDS bottleneck including distributed checkpointing, distributing interconnections between sensors and
data processors (i.e., distributed data), algorithm variations, and improving the performance of the MDS. The study
showed that eliminating extraneous MDS accesses was the best option though enhancing the MDS memory was also
a good option for increasing performance. With regards to scalability, changing the algorithm from a parallel to a
distributed approach and including distributed checkpointing provides the best performance improvement of all the
options analyzed. For large image sizes (i.e., 64 MB), the distributed FFT with distributed data was the only option
that showed a large improvement because more processing could occur when data was more readily available for the
processors. Based upon these results, a distributed mass-memory system will be further explored and developed in
the future.

The DM management system design and implementation has been examined and several system architecture
tradeoffs have been analyzed to determine how best to deploy the system for the NMP flight design to be launched
in 2009. The results presented in this paper demonstrate the validity of the DM system and show the management
service to be scalable and provides an adequate level of performance and fault tolerance with minimal overhead.
Future work for the DM project includes additional fault-tolerance and availability analysis for failure rates likely to
be observed in deep space missions.

654

TROXEL, GROBELNY, AND GEORGE

Acknowledgement
The authors wish to thank Honeywell Inc., NASA NMP and NASA JPL for their continued support of this project,

and a special thanks to Vikas Aggarwal at Tandel Inc. for developing benchmarks used in our experiments and to
Rajagopal Subramaniyan, Grzegorz Cieslewski, Adam Jacobs, John Curreri and Mike Fischer of the HCS Lab at
Florida for their support on the project.

References
1Griffin, M., “NASA 2006 Strategic Plan,” National Aeronautics and Space Administration, NP-2006-02-423-HQ,

Washington, DC, February 2006.
2Samson, J., Ramos, J., Troxel, I., Subramaniyan, R., Jacobs, A., Greco, J., Cieslewski, G., Curreri, J., Fischer, M., Grobelny,

E., George, A., Aggarwal, V., Patel M., and Some, R., “High-Performance, Dependable Multiprocessor,” Proc. of IEEE/AIAA
Aerospace Conference, Big Sky, MT, March 4–11, 2006.

3Dechant, D., “The Advanced Onboard Signal Processor (AOSP),” Advances in VLSI and Computer Systems, Vol. 2, No. 2,
October 1990, pp. 69–78.

4Iacoponi M., and Vail, D., “The Fault Tolerance Approach of the Advanced Architecture On-Board Processor,” Proc.
Symposium on Fault-Tolerant Computing, Chicago, IL, June 21–23, 1989.

5Chen, F., Craymer, L., Deifik, J., Fogel, A., Katz, D., Silliman, A., Jr., Some, R., Upchurch S., and Whisnant, K., “Demon-
stration of the Remote Exploration and Experimentation (REE) Fault-Tolerant Parallel-Processing Supercomputer for Spacecraft
Onboard Scientific Data Processing,” Proc. International Conference on Dependable Systems and Networks (ICDSN), NewYork,
NY, June 2000.

6Whisnant, K., Iyer, R., Kalbarczyk, Z., Jones III, P., Rennels D., and Some, R., “The Effects of an ARMOR-Based SIFT
Environment on the Performance and Dependability of User Applications,” IEEE Transactions on Software Engineering, Vol. 30,
No. 4, April 2004, pp. 257–277.

7Williams, J., DawoodA., and Visser, S., “Reconfigurable Onboard Processing and Real Time Remote Sensing,” IEICE Trans.
on Information and Systems, Special Issue on Reconfigurable Computing, Vol. E86-D, No. 5, May 2003, pp. 819–829.

8Williams, J., Bergmann, N., and Hodson, R., “A Linux-based Software Platform for the Reconfigurable Scalable Computing
Project,” Proc. International Conference on Military and Aerospace Programmable Logic Devices (MAPLD), Washington, DC,
September 7–9, 2005.

9Bertier, M., Marin O., and Sens, P., “A Framework for the Fault-Tolerant Support of Agent Software,” Proc. Symposium on
Software Reliability Engineering (ISSRE), Boulder, CO, November 17–20, 2003.

10Li, M., Goldberg, D., TaoW., and Tamir,Y., “Fault-Tolerant Cluster Management for Reliable High-performance Computing,”
Proc. International Conference on Parallel and Distributed Computing and Systems (PDCS),Anaheim, California,August 21–24,
2001.

11Troxel, I., Jacob,A., George,A., Subramaniyan R., and Radlinski, M., “CARMA:A Comprehensive Management Framework
for High-Performance Reconfigurable Computing,” Proc. International Conference on Military and Aerospace Programmable
Logic Devices (MAPLD), Washington, DC, September 8–10, 2004.

12Prado, E., Prewitt P., and Ille, E., “A Standard Approach to Spaceborne Payload Data Processing,” IEEE Aerospace
Conference, Big Sky, Montana, March 2001.

13Fuller, S., “RapidIO - The Embedded System Interconnect,” John Wiley & Sons, January 2005.
14Feitelson, D., and Rudolph. L., “Evaluation of Design Choices for Gang Scheduling Using Distributed Hierarchical Control,”

Journal of Parallel and Distributed Computing, Vol. 35, No. 1, May 1996, pp. 18–34.
15Fagg, G., Gabriel, E., Chen, Z., Angskun, T., Bosilca, G., Bukovsky, A., and Dongarra, J., “Fault Tolerant Communication

Library and Applications for HPC,” Los Alamos Computer Science Institute (LACSI) Symposium, Santa Fe, NM, October 27–29,
2003.

16Troxel I., and George, A., “Adaptable and Autonomic Mission Manager for Dependable Aerospace Computing,” Proc. IEEE
International Symposium on Dependable, Autonomic and Secure Computing (DASC), Indianapolis, IN, September 29-October 1,
2006 (to appear).

17Message Passing Interface Forum, “MPI: a message-passing interface standard,” Technical Report CS-94-230, Computer
Science Department, University of Tennessee, April 1, 1994.

18Subramaniyan, R., Aggarwal, V., Jacobs, A., and George, A., “FEMPI: A Lightweight Fault-tolerant MPI for Embedded
Cluster Systems,” Proc. International Conference on Embedded Systems and Applications (ESA), Las Vegas, NV, June 26–29,
2006.

19Villarreal, J., Suresh, D., Stitt, G., Vahid, F., and Najjar, W., “Improving Software Performance with Configurable Logic,”
Journal of Design Automation for Embedded Systems, Vol. 7, No. 4, November 2002, pp. 325–339.

655

TROXEL, GROBELNY, AND GEORGE

20Greco, J., Cieslewski, G., Jacobs, A., Troxel, I., Conger, C., Curreri, J., and George, A., “Hardware/software Interface for
High-performance Space Computing with FPGA Coprocessors,” Proc. IEEE Aerospace Conference, Big Sky, MN, March 4–11,
2006.

21Holland, B. M., Greco, J., Troxel, I. A., Barfield, G., Aggarwal, V., and George, A. D., “Compile- and Run-time Services
for Distributed Heterogeneous Reconfigurable Computing,” Proc. of International Conference on Engineering of Reconfigurable
Systems and Algorithms (ERSA), Las Vegas, NV, June 26–29, 2006 (distinguished paper).

22Huang K., and Abraham, J., “Algorithm-Based Fault Tolerance for Matrix Operations”, IEEE Transactions on Computers,
Vol. C-33, No. 6, June 1984, pp. 518–528.

23Scott, D., Jones, P., Hamman, M., Kalbarczyk, Z., and Iyer, R., “NFTAPE: Networked Fault Tolerance and Performance
Evaluator,” Proc. International Conference on Dependable Systems and Networks (DSN), Bethesda, MD, June 23–26, 2002.

Stanley Nissen
Associate Editor

656

